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1 | INTRODUCTION
1.1 | Control of coupled transport PDEs

Systems of transport partial differential equations (PDEs) appear in many physical models, including road traffic,'* water
level dynamics,>” and flow of fluids in transmission lines.®? In the past 10 years, many authors have contributed to bound-
ary control of the coupled transport PDEs. The basic boundary stabilization problem of 2 x 2 coupled linear transport
PDESs by backstepping was addressed in References 10,11, which was further extended to boundary control of an n+ 1
system in Reference 12. For a more general coupled transport PDE system, where the number of PDEs in either direction
is arbitrary, a boundary stabilization law was first designed by backstepping in Reference 13. Boundary control of cou-
pled transport PDEs connected with ordinary differential equations (ODESs) at the uncontrolled boundary was studied in
References 14-17.

Through the Riemann transformations, wave PDEs can be converted to 2 x 2 hyperbolic PDEs.!82! Therefore, in
addition to the applications to the traffic and water-level dynamics, the boundary control design for coupled first-order
hyperbolic PDEs has also been applied to wave PDE-modeled dynamics, such as oil drilling,'® cable elevators,?* and
deep-sea construction vessels.??
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1.2 | Adaptive control of PDEs

Based on approximated reduced-order models, learning-based state estimation and stabilization for PDEs with param-
eter uncertainties are presented in References 24,25, respectively. For fully model-based adaptive control?® of PDEs
without model approximation, three traditional schemes are the Lyapunov design, the passivity-based design, and the
swapping design,?” which were initially developed for ODEs in Reference 28. Using the three design methods, adap-
tive control designs were proposed for parabolic PDEs in References 29-31. For adaptive control of hyperbolic PDEs,
many results, based on the three conventional methods, have been introduced in References 19,32-43. An adaptive
control application to congested traffic is shown in Reference 2. As in all conventional adaptive control, the adaptive
control designs achieve only asymptotic convergence of the plant states, without being guaranteed to identify exactly the
true parameters.

Recently, a new adaptive scheme, using a regulation-triggered batch least-squares identifier (BaLSI), was introduced
in References 44,45, which has at least two significant advantages over the traditional adaptive approaches: guaranteeing
exponential regulation of the states to zero, as well as finite-time convergence of the estimates to the true values. An appli-
cation of BaLSI to a two-link manipulator, which is modeled by a highly nonlinear system and subject to four parametric
uncertainties, is shown in Reference 46. Regarding PDEs, this method has been successfully applied in adaptive control
of a parabolic PDE where the unknown parameters are the reaction coefficient and the high-frequency gain.*’ Using the
least-squares identifier updated in a sequence of times with fixed intervals, the backstepping adaptive boundary control
design of a first-order hyperbolic PDE where the transport speed is allowed to be unknown, was first proposed in Refer-
ence 48, and extended to the case with a spatially varying coefficient in Reference 49. Extending the result in Reference
50 with removing the restriction of nonzero initial conditions of PDEs, in this paper we develop a BaLSI-based backstep-
ping adaptive boundary controller for a heterodirectional transport PDE-ODE system, where both of the two transport
speeds are unknown.

1.3 | Contributions

« In this paper, we design an adaptive certainty-equivalence controller with regulation-triggered batch least-squares
identification for a coupled hyperbolic PDE-ODE system where the unknown parameters are transport speeds. It would
be appropriate to regard this paper as the hyperbolic equivalent of the paper*” for a parabolic PDE, where the unknown
parameters are the reaction coefficient and the high-frequency gain.

« Compared with previous adaptive control results for coupled transport PDEs,3>3°> where the transport speeds or trans-
port delays are required to be known, and only the asymptotic convergence to zero of the plant states is achieved, our
design deals with unknown transport speeds (only bounds being known) with finite-time exact estimations (from most
initial conditions), and achieves exponential regulation of the plant states to zero. To permit the transport speeds to be
unknown, we require the full PDE state to be measured (as might be feasible in congested traffic applications on fully
instrumented freeways).

« As compared to References 48,49 which deal with adaptive control of a first-order hyperbolic PDE with an uncertain
in-domain source parameter and an uncertain transport speed, where the parameter identifiers were employed with
updates at a sequence of times separated by fixed intervals, we design here an adaptive controller for a heterodirectional
first-order hyperbolic PDE-ODE system, where both of the two transport speeds are unknown, and the identifier is
updated at a sequence of nonequidistant times, which are determined by an event trigger that is activated based on the
progress of the regulation of the plant’s PDE and ODE states.

1.4 | Organization

The problem formulation is shown in Section 2. The nominal control design is presented in Section 3. The design of
the regulation-triggered adaptive controller is proposed in Section 4. The main results, including the parameter con-
vergence, the exclusion of the zeno phenomenon, and exponential regulation of the states, are proved in Section 5.
The effectiveness of the proposed design is illustrated with simulation in Section 6. The conclusion, are given in
Section 7.
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1.5 | Notation

We adopt the following notation.

« The symbol Z, denotes the set of all nonnegative integers and R, := [0, +0).

« Let U C IR" be a set with non-empty interior and let Q C R be a set. By C°(U; Q), we denote the class of continuous
mappings on U, which take values in Q.

« We use the notation N for the set {1, 2, ... }, that is, the natural numbers without 0.
« ForanI C R,, the space C°(I; L?(0, 1)) is the space of continuous mappings I 3 ¢t u[t] € L*(0, 1).

o Let u: Ry x[0,1] » R be given. We use the notation u[t] to denote the profile of u at certain t>0, that is,
(u[t)(x) =ulx, t), for all x € [0, 1].

2 | PROBLEM FORMULATION

In this paper we consider the class of plants

£(6) = (a=qbo)l (t) + b(g2 + qip)w(0, 1), >0, ey
2,0 = —quze(x,0), x€[0,1], £ >0, 2
Wi, f) = gwe(x, 1), x€[0,1], £ >0, 3)

200, 1) = c£(t) — pw(0,1), £ >0, 4)

w0 = LU0+ L., 120 5)

with initial conditions w(x, 0) = wy(x) for x € [0, 1), z(x, 0) = zo(x) for x € (0, 1], £(0) = &,, where {(¢) is a scalar ODE state
and scalar z(x, t), w(x, t) are PDE states. The boundary condition (5) contains the control input U(t). The class of (1)-(4)
is motivated by a wave PDE converted to Riemann variables. It is through such a transformation process that possibly
unmotivated-looking coefficients a — q1bc and b(q, + q1p) in (1) arise.

It is the parameters q; and q,, which appear both as transport speeds and in the ODE (1) and the boundary condition
(5) that we consider unknown. The speed q; is arbitrary and, of course, positive. The constants a, b, c, p are arbitrary and
positive as well. The constant c is arbitrary and nonzero.

To make the problem as nontrivial as we can within this class, we only consider the case where the ODE (1) is unstable,
with a — g, bc > 0, that is, the case where the unknown propagation speed q; satisfies

a
0<q < —. 6
q1 be (6)

The unknown transport speeds qi, g, are assumed to have known upper bounds g, > 0,g, > 0 and lower bounds
q,> 0, q,> 0, respectively. The bounds 4, g, are arbitrary, in addition to satisfying the obvious relation q,< q,-

For the bounds q, q,, the following two assumptions are made.

Assumption 1. The upper bound g, satisfies

- a
q, < be' 7

In addition to being consistent with the instability assumption (6), namely, 0 < g; < g; < a/(bc), Assumption 1 is also
used in the forthcoming design condition (12) where the control gain « is chosen in accordance with the known bounds
on the unknown parameters.
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Assumption 2. The difference between the upper and lower bounds q, <q, is smaller than the following unknown
constant,

_ q2917p
G-4, <\ 5 (8)

where 14, 7, are positive unknown constants, upper and lower bounded, respectively, as

rp < , )
2c5q1
2 > . (qup + q2)°b?
> — + — ], 10
Fq % (fh rpp om (10)
the unknown constant m in the bounds (9) and (10) is defined as
m = —a + q1bc — bx > 0, (11)
and the constant x appearing in (11), and to be used later in control design, is chosen to satisfy
= - ¢b(@,+4,p)
C@-gpo i+ @-g) (2R 4p)|
K < min .q,6= 50 12)

_gzb

The purpose of Assumption 2, that is, (8) will become evident in Section 3, with the purpose of (8) becoming evi-
dent specifically in inequality (28), whose role is in estimating the exponential decay rate under nominal feedback. This
assumption is not required in the BaLSI design and the exact parameter estimation. It is used in the stability analysis by
the Lyapunov method in Section 5. If there is no unknown parameter staying with the proximal reflection term z(1, t) in
(5), Assumption 2, that is, (8), is not required.

Assumption 2 is difficult to verify a priori for two reasons. First, because the unknown ¢, and g, appear in (8), (9), (10),
(11). Second, because q; — q, appears both on the left of (8) and on the right of (12). But Assumption 2 can unquestionably

be satisfied for sufficiently small q; — q; Unfortunately, very small q; — 4, essentially means that the transport speed q;
is known.

Let us now recap that gq,, which appears in the actuated w-PDE in (3), and is the transport speed in the direction
downstream from the input, is arbitrary (positive), whereas the unactuated z-PDE in (2) may have to be nearly perfectly
known.

The parameters qi, g, appear in both the PDE as well as the ODE. The structure of the plant and the conditions
of the plant parameters come, at least in principle, and as we already indicated above, from writing a wave PDE-ODE
coupled model in Riemann coordinates. If the wave PDE’s Young modulus were unknown, the transformation into the
Riemann variables would contain such an unknown quality, which would render z(x, t) and w(x, t) unmeasurable. We
proceed with an adaptive design for the class of systems (2), (3) with the expectation that applications do exist in which
the transformation step into (2), (3) is not needed and (z, w) are measurable.

If the original plant were a wave PDE, the ODE (1) would be driven by the wave PDE’s boundary state of Neumann
type, multiplied by a coefficient associated with the wave PDE’s propagation velocity, while the opposite boundary of the
wave PDE would be actuated using Neumann actuation with a coefficient associated with the wave PDE’s propagation
velocity as well. One physical model of this type system is an oil well drilling model,> where

¢ Iy GI - 2
a=—, b:—, = = —, = —, =1, c¢c=2,
Iy 2Ip Q=4 Iy Iy P

with I being the moment of inertia per unit of length, G the shear modulus, J the geometrical moment of inertia of the
drill pipe, c, the anti-damping coefficient at the bit due to the stick-slip instability, and Iz the moment of inertia of the
Bottom Hole Assembly.
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3 | NOMINAL CONTROL DESIGN

We introduce the following backstepping transformation

a(x, t) = z(x, 1), (13)
BCx, 1) = w(x, t) — /0 ) 0, YW, Hdy — A (1), (14)
where
A q1,q2) = Weé(a_qlb@x, (15)
B06,Y: G, §a) = % o1 @ D) b, (16)

and « is a design parameter, first mentioned in Assumption 2, and to be chosen according to (12).

Writing q1, g, after “;” in A(x; q1,q2) and ¢(x,y; q1, g2) emphasizes the fact that ¢(x, y), A(x) depend on the unknown
parameters q, gs.

By applying the backstepping transformations (13), (14), the plants (1)-(5) is converted to the target system

§(t) = —mg(®) + b(q1p + 42)(0, 1), 17)
a(0,1) = ¢ot (8) — p(0, 1), (18)
ai(x, t) = —qrox(x, 1), (19)
Bu(x, 1) = qarx. 1), 20)
B0 =0, (21)
where
co =¢—pA0;q1,q2) (22)
The control input U(£) is chosen as
IHD=—%mdLD—Q{AaﬂLﬂmﬂﬁM%DW—qﬁﬂmh%KmL (23)
to ensure (21).
Define
Q(t) = [IzIAN? + w1 + ¢ @02, (24)

and a vector 0 containing the two unknown parameters as
0=(q1.9)". (25)

Through Lyapunov analysis for the target system (17)-(21), and applying the invertibility of the backstepping
transformation, the estimate

Q) < YoQ(0)e ™!, >0, (26)
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is obtained, where the decay rate 4, is
.1
A1 = min{ E(qlbc —a— bx),6q,,6q1}, (27)

with the analysis parameter § > 0 selected as

s<In( —1— /24 (28)
ql—gl 2rq

in order to meet the needs of the Lyapunov analysis, which will become evident in Section 5. For the right-hand side of
(28) to be positive, we need

1 q2917p
(q, _gl) 2rq

> 1. (29)

This is ensured by Assumption 2. To recap, 6 in (28) is only an analysis parameter, which influences the decay
rate in (26).
The overshoot coefficient Y, obtained in (26), through the straightforward and omitted Lyapunov analysis, is

Y, = 25 (30)
&1és
where the positive constants &, &, &3, &, are
(1.1 s 1}
=minq =rg, =re°’, = ¢, 31
& =min{ o, Zre, 2 (31)
1 51 1}
=maxq =rqe’, =rp, = ¢, 32
& = max {3’ Sh. 3 (32)
1
&= 3k2b? 3i2 ’ (33)
322 172 27112
max{3+ q? [l ’(q2+q1p>2”m” +1}
2hK2 2
§4=maX{3+3K LT 2||ﬁ||2+1}, (34)
q2 (@2 + q1p)
with
a—qq be+bx R
mx)=e « °, nXx) =e=x (@ qlbc)x, (35)

and with the positive constants r,, r, required in Assumption 2 to satisfy (10), (9).

The relations (30)-(35), (9), (10), (28) will be used in the proofs of the main results in Section 5.

We refer to the controller U(¢) in (23) as the nominal feedback, which requires the knowledge of the values of the
parameters q, q,. The adaptive scheme working with the nominal feedback (23) and guaranteeing exponential regulation
is presented in the next section.

4 | REGULATION-TRIGGERED ADAPTIVE CONTROL

The regulation-triggered adaptive control includes a certainty-equivalence controller and a least-squares identifier which
is updated at a sequence of time instants.
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4.1 | The certainty-equivalence controller

The control action in the interval between two consecutive events is the result of replacing the unknown parameters q1, q
in the nominal control law (23) by their estimates §,, §, at the beginning of the interval, with the estimates §,, §, kept
constant during the interval. In other words, the adaptive version of (23) is given by

1
U(t)=—%[Ql(n)z(l,t)—f]z(fi) / ¢, y; 0(x))w(y, Ddy — §>(2) AL 0T NEWD], ¢ € [t1,7i1), i€ Zy,  (36)
0

0 = (@,(0, 40" = (), @) = (), t € [t1,Ti01), i € Zy, (37)

where {7; > 0} is the sequence of time instants, which, along with the estimates O(z,), is defined next.

4.2 | The event-trigger
The sequence of time instants {z; > 0} is chosen to satisfy
7y = min{z; + T,r}, (€ Z,, (38)

with 7o = 0. The constant T'> 0 is a design parameter with the purpose to avoid a low update frequency and, more impor-
tantly, r; > 7; is a time instant determined by an event trigger which is designed next. The trigger was introduced in
Reference 47 and is based on the progress of the regulation of the states.

The event trigger sets r; > 7; to be the smallest value of time ¢ > 7; for which

Q(f) = Y, + a)Q(1), (39)

for Q(z;) # 0, where Yoy 21 is the coefficient defined by (30) with q;, g, replaced by §,, §,, the design parameter a is
positive, and Q is defined by (24) with the solutions of (1)—(5) under (36). In simple terms, the parameter estimate update is
triggered if the plant norm has grown by a certain factor, specially, by Y, (1 + a). Since Y., is the overshoot coefficient
already associated with the system transient in accordance with the estimate (26), the real net growth factor that triggers
the update is 1 + a for any a > 0 chosen by the user.

If a time ¢ > 7; satisfying (39) does not exist, we set r; = +o0. For the case that Q(z;) = 0, we set r; := 7; + T. Therefore,
the event trigger r; is built as

v =inf{t> 7 : Q) = Yé(ri)(l +a)Q(t;)}, Q(z;) # 0, (40)
ri:=17+T, Q) =0. (41)

The following lemma shows that the event-trigger is well-defined and produces an increasing sequence of events.
Lemma 1. The event-trigger (38 ), (40 ), (41 ) is well defined, that is, 741 > 7, forallie Z,.
Proof. If Q(z;) = 0, it follows from (38), (41) that 7., = 7; + T. If Q(7;) # 0 and r; defined in (40) is less than 7; + T, the

dwell time ;41 — 7; is greater than zero because Q(zi41) = Y,,(1 + a)Q(r;) > Q(1;) and Q(t) defined in (24) is a continuous
function on t € [7;, 7i41]. If ¥; > 7; + T or r; is infinite, it follows from (38) that 7;,; = 7; + T. n

The above lemma allows us to define the solution on the interval [0, lim;_, (7;)).

4.3 | Least-squares identifier

The least-squares identifier activated by the trigger defined by (38)—(41) is designed in this subsection. The design
idea of the identifier follows from Reference 47. According to the considered dynamic model, by applying integration,
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formulating a cost function, using Fermat’s theorem, a matrix equation is constructed, with an unknown vector of plant
parameters, and with the equation’s coefficients being the plant states over a time interval. The parameter estimation is
then treated as a convex optimization problem with linear equality constraints.

By virtue of (1)-(5), we get for z > 0and n=1, 2, ... that

d% ( /0 1 cos(xmn)z(x, t)dx + /0 1 cos(xrn)w(x, 7)dx + %C (r))
=—-q1(-1)"z(1,7) + q12(0, 7) — q17n /0 1 sin(xzn)z(x, t)dx
+ q2(-1)"w(1, 7) — g;w(0, 7) + q27n /01 sin(xzn)w(x, t)dx
+ 2L+ (@w0.7) ~ :2(0.7))
= —quan /O 1 sin(xzn)z(x, t)dx + gan /0 1 sin(xzn)w(x, 7)dx + (—1)"eU(7) + %5(1), (42)

where (4) was inserted into (1) to replace g;bc¢(f) and to yield

d
3,50 = al(®) + b(gaw(0, 7) - 0:2(0, 7). (43)
Integrating (42) from u;4; to t, yields

ot piv1) = q18n1(E, piv1) + q28n (L, i), (44)

where
1 1 1
Ju(t, piz1) = < / cos(xzn)z(x, t)dx + / cos(xzn)w(x, t)dx + Bé‘ (t)>
0

1 1
/ cos(xmn)z(x, piy1)dx + / cos(xrn)w(x, uir1)dx + %C (ﬂi+1)>
0 0

0
! — a
- /ﬂ | (v cU(r)+Ecr(r>)dr,

i+1

t 1
gna(t, pi1) = — / mn / sin(xzn)z(x, t)dxdr, (45)
0

Hit1
t 1

8n2(t, piy1) = / n / sin(xzn)w(x, 7)dxdr, (46)
H;. 0

i+1
forn=1,2, .... The time p;,; introduced in Reference 44 is

pi1 c=min{z 1 f € {0, ... i}, 77 > Ti -NT}Y, 47)
where the positive integer N > 1 is a design parameter. In practice, a larger N can reduce the effect of measurement noise

on the precision of estimation, with a cost of larger computation.*
Equation (44) is written as

fn(t’ Mi+1) = r]i’l(t’ )ui+1)97 (48)

where

'ln(t’ Hi+1) = [gn,l(ta /’li+1)’ gn,Z(t’ :ui+1)]’ (49)
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and 0 is defined in (25). Define the function h;,, : R?> — R, by the formula

hi,n(l’p) = (fn(t» ﬂi+l) - ”In(t» /’ti+1)f)2dtv (50)

Hin

forn=1,2,...,¢=[t1,¢:],ieZ,.
According to (48), the function h; ,(¢) (50) has a global minimum h; ,() = 0. We get from Fermat’s theorem (vanishing
gradient at extrema) that the following equations hold for everyie Z, and n=1,2, ...:

Hy 1 (piv1, Tiv1) = q10n1(Hiv1, Tiv1) + 420 2(Hiv1, Tiv1), (51)
Hy o (piv1, Tig1) = q1Qn2(Miz1, Tiv1) + 2Qn3(Mit1, Tit1), (52)
where
Tiv1
Hy 1 (pig1, tig1) = / En1(t, pir)fn(E, pig1)dt, (53)
Hiy1
Tiv1
Hy (i1, Tip1) = / 8n2(t, pir)fu(t, pip1)dt, (54)
Hip1
Tit1
Qn1(Miv1, Tig1) = / Gty piv1)dr, (55)
Hit1
Tiy1
Qn2(Hiv1, Tiy1) = / 8n1 (L, Hiy1)8n2(t, Hiy1)dt, (56)
Hiy1
Tiy1
Qn3(Uit1, Tig1) = / Gn2(t, piv1)dr. (57)
Hiy

Indeed, (51), (52) are obtained by differentiating the functions h; ,(¢) defined by (50) with respect to ¢4, £,, respec-
tively, and evaluating the derivatives at the position of the global minimum (¢, #,) =(q1, g2). Equations (51) and (52) are
organized as

Zn(Hir1, Tir1) = Gn(pir1, Tit1)0, (58)
where
Zn(pis1» Ti1) = [Hua (His1s Tisn)s Hoo (i, 74117 (59)
Gohtinr. Tour) = Qn1(pir1, Tiv1)  Qna(Hisa, Tir1) . (60)
Qn2(Hir1, Tiv1)  Qn3(His1, Tiv1)
The parameter update law is defined as
O(ti1) = argmin{|£ — 0(z)|* : £ € ©, Zp(uip1. 1) = Gu(pi1. ip))e, n=1,2, ... }, (61)

where® = {# € R? : q < £ < al,gz < ¢, < q,}. The estimates are updated at 7;,1, that is, 8(zi11) = (§, (tis1), 45(7i21) )7
using the plant states over the time interval [y;,1, 7i41], where the length of the data acquisition can be adjusted by N in
(47). The initial values of the estimates @, (0), §,(0) are chosen as ¢, (0) = g9, q,(0) = 9, making 4, (r;) < g1 and §,(;) < g2,
which will be seen more clearly later. If a more robust identifer with respect to random measurement noise is required,
the identifer can be designed in a double integral form as in Reference 44.

For the solution notion, according to definition A.5 in Reference 52, we give the following weak solution definition.
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Definition 1. Consider the system

Ri+A@Rx + MX)R =0, t€ [0,00), x € [0,L], (62)
+ L
() (50 (Y () o
R-(t,L) R(t,0) N- o \F (%)
‘% = E*R*(t, L)+ E-R*(1,0) + EoX, X € RP, (64)
R(0,x) = Ro(x), X(0) = Xo, (65)

where R : [0,+00) X [0,L] - R",M : [0,L] - M, »,(R), the symbol M, ,(R), as usual, denotes the set of nxn real
matrices, F* : [0,L] &> M (R), F~ : [0,L] &> Mp_m(R), and A(x) £ diag{ A*(x), A~(x)} such that

A*(x) £ diag{ 41 (%), ..., An(0)}, (66)
A~ (x) & —diag{ Ann1 (), ... , 1,0}, (67)
with A;(x) > 0,Vx € [0, L], and where
A [ Koo Ko1
K= ’KOO € Mm,m(]R)’KOI € Mm,n—m(R)’ (68)
Ky K
K10 € Mn—m,m(R)v Kll € Mn—m,n—m(R)’ (69)
Nt e R™P, N~ g R—mxp, (70)
Et e R E~ ¢ RPXVm [ e RP?P. (71)

A solution R: (0, +c0) X (0,L) - R*, X : (0,c0) — RP of the system (62)-(65) is a map R € C°([0, +o0); L?(0, 1); R"),
X € C([0, +0); RP) satisfying (65) such that, for every T > 0, every y € C([0, T] X [0, L]; R"), and every n € C'([0, T]; RP)
satisfying

<l//+(t, L)> _ <A+(L)‘1KOTOA+(O) A+(L)‘1K1T0A‘(L)> 72

w(t,0) A~(O)'KLAT(0) AT(0)'KLAT(L)
w(t,0) AH(L)E*T
X + n,
v (t,L) AY(OET

L L
/ w(T,x)"R(T, x)dx — / w(0,%)"Ro(x) + 1" (DX(T) — n" (0)X(0)
0 0

we have

T L
= / / v +wd A+ y (A = M) +y ™ T(LLDAT(DF™ + w1 (t, 0)A*(0)F [Rdxdt
0 0

T
+ / n] +n"Eo + w T (t, A" (L)N™ + w*'(t,0)A* (0)N*]1Xdt. (73)
0
Proposition 1. For every (zo,wo)T € L2((0,1); R2), &, € R and 6, € O, the initial boundary value problem (1)-(5) with
(36), (37), (38), (40), (41), (47), (61) and initial conditions w[0] =wy, z[0] =z0, £(0) = o, H(0) = By, has a unique (weak)
solution ((z,w)", &) € CO([0, limy—.o (7)); L*(0, 1); R?) x CO([0, limy—. oo (7)); R).

Proof. The proof is shown in Appendix A. m
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The flow chart of the mechanism of the regulation-triggered adaptive controller is shown in Figure 1, and some system
properties are given in the following lemmas. In the rest of this paper, when we say that z[t], w[t] are equal to zero
for x € [0,1],t € [pi41, Tiv1], Or not identically zero on the same domain, we mean “except possibly for finitely many
discontinuities of the functions w[t], z[t].” These discontinuities are isolated curves in the rectangle [0, 1] X [#i+1, Ti+1]-

Lemma 2. The sufficient and necessary condition of Qn1(pi+1,Tit1) = 0 (or Qn3(Hit1,7ir1) = 0) for n=1,2, ... isz[t]=0
(orw[t]=0)ont € [pit1, Tis1].

Proof. Necessity: If Qu1(pit1,7i+1) =0 for n=1,2, ..., then the definition (55) in conjunction with continuity of
gna(t, uir1) for t € [piy1, 71111 (a consequence of definition (45) and the fact that z € CO([p;41, 7i111; L2(0, 1))) implies

8ni(t, piz1) =0, t € [Hiz1, Tig1]. (74)

According to the definition (45) and continuity of the mapping r — /01 sin(xzn)z[r]dx (a consequence of the fact that
Z € C%([pis1, 7i+11; L*(0, 1)), (74) implies

1
/Smmmm&WM=QT€WMWHL (75)
0

for n=1,2, .... Since the set {\/zsin(mrx) :n=1,2, ...} is an orthonormal basis of L?(0,1), we have z[t]=0 for ¢ €

[Hir1, Tir1 ]

Similarly, if Q,3(¢i+1,7i1) =0forn=1,2, ..., thenw[t] =0 on ¢ € [ui11, 7i+1], recalling the definitions (57), (46), and
the fact that w € CO([ 41, 7i41]; L%(0, 1)), and the set {\/zsin(mrx) : n=1,2, ... } being an orthonormal basis of L2(0, 1).

Sufficiency: If z[t] =0 on t € [pi41, 1] (Or w[t] =0 0n ¢ € [pit1, 7i41]), then Qui(pis1, Tiv1) = 0 (or Qn3(Hiz1, Tiv1) = 0)
forn=1,2, ... is obtained directly, according to (45), (55) and (46), (57).

The proof of Lemma 2 is complete. [

Lemma 3. For the adaptive estimates defined by (61) based on the data in the interval t € [u;41, 7i41], the following
statements hold:

Plant states

Sec
A
Ty =7+ T
e s :::::{ s ot
Update () : activating the least-squares
pdate 6(z,,,) g q Sec. 4.3

|
|
|
. . . ! N
identifier using the measurements of the |~
plant states on the interval [4,,,.7,,,] 1
|

The adaptive certainty-

equivalence controller
FIGURE 1 The adaptive certainty-equivalence control scheme q (36)

with regulation-triggered batch least-squares identification
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(D If z[t] is not identically zero and w(t] is identically zero on t € [piy1, Tiv1], then §,(zir1) = q1, §o(tiv1) = §(71);
(2) If w[t] is not identically zero and z[t] is identically zero on t € [pi1, Tir1], then §,(ziz1) = §1(71), §5(Tit1) = Qa5
(3) If wlt], z[t] are identically zero on t € [uis1, Tiv1], then §,(7iy1) = §,(10), §5(7i41) = Q,(70);

(4) If both w(t] and z[t] are not identically zero on t € [pit1, Tiv1), then §,(ziv1) = q1, §,(Tit1) = Q-

Moreover, if §,(7;) = q1 (or §,(z;) = q2) for certain i € Z, then §,(t) = q1 (or §,(t) = q2) for all t € [;, limy_, (7k)).

Proof. Define the following set
S :={7 €0 Zy(ui+1, 1iv1) = Gu(pir1, 1ix1)¢, n=12, ... }. (76)

If S; is a singleton then it is nothing else but the least-squares estimate of the unknown vector of parameters (g1, q2)
on the interval [p,1, Tip1]-

(1) Because z[t] is not identically zero and wt] is identically zero on t € [u;41, 7iy1], there exists n € N such that
Qn1(Mi+1, Tiv1) # Orecalling Lemma 2. Define the index set I to be the setof all n € Nwith Q,, 1 (4i+1, 7i+1) # 0. According to
(46) and w(t] being identically zero on t € [pit1, 7i41], we know that g, »(¢, piv1) = 0ont € [pipr, ti1lforn=1,2, ... . It fol-
lows that Q, 2(#it1, Ti+1) = 0, Qus(Hit1, Tiv1) = 0, Hya(Hit1, 7ip1) = 0forn=1,2, ... recalling (56), (57), and (54). Then (76)

implies S; = {(£1,£2) €0 : £ = % n € I} recalling (59), (60). Because (q1, q2) € S; according to (58), it follows

that S; = {(q1,7,) €O : q, < ¢, £q,}. Therefore (61) shows that §;(zi+1) = ¢q1 and §,(zi+1) = §,(3).

(2) The proof of (2) is very similar to the proof of 1), and thus it is omitted.

(3) Because wlt],z[t] are identically zero on t €& [ui+1,7i+1)s then Qpi(pit1,7it1) =0, Qua(fit1,7it1) =0
Quis(piv1, Tiv1) = 0, Hp1(piz1, Tiv1) = 0, Hy2(piy1, 7ip1) = 0forn=1,2, ... according to (45), (46), (53)-(57). It follows that
S; = 0, and then (61) shows that §,(zi+1) = §,(%i), §»(7i+1) = §,(72)-

(4) Because w[t] (or z[t]) are not identically zero on t € [p;1, 7i41], there exists n € N such that Q,, 3(pit1, 7i+1) # O (or
Qui1(fit1, Ti1) # 0) recalling Lemma 2. Define the index set I; to be the set of all n € N with Q,1(#i+1, 7i+1) # 0 and define
the index set I, to be the set of all n € N with Q,, 3(¢i+1, 7i+1) # 0. Denote the elements in I; as n; € N and those in I, as
ny € N, that is, Qp, 1(#i1, Tiv1) # 0, Qn, 3(Mit1, Tix1) # 0.

From (76), recalling (59)-(60), we obtain

Hy, 1(Hi+15 Tiv1) Qn, 2(Hiv15 Tiv1)

2
Qn, 1 (Hi+1, Tit1) Qn, 1 (Hi+1, Tiv1)

Siggai:={(lxﬂ1,bﬂz)e®:f1= 7n1€Il}v (77)

Hy, 2(piv1, Tiv1) Qn, 2(Hi+1> Tiv1)

-1
Qn,3(Hi+15 Ti+1) Qn, 3(His1, Tit1)

Siggbi:={(f1,f2)e®:f2= ,I’leIz}. (78)

We next prove by contradiction that S; = {(q1, g2)}. Suppose that on the contrary S; #{(q1, g2)}, that s, S; defined by (76)
is not a singleton, which implies the sets Sm, Sp; defined by (77), (78) are not smgletons (because either of Sal, sz being a
singleton implies that S; is a singleton). It follows that there exist constants 4 € R, 4; € R such that

in 2(Hir1, Tiy1) =

=A, mel, (79)
Qn, 1 (Hi+15 Ti+1) b
Qn2(Hiy1, Tiv1) =
Ky 2WHi, Titl) 7, my €L, (80)
Qn, 3(Hit15 Tit1)

Qky 2(Hir15Ti41) Qry 2 (Hi15Ti41)

Qky 3(His15%i41) ka,s(ﬂmvfm)

because if there were two different indices k1, k, € I, with , then the set Ebi defined by (78) would

be a singleton, and the same would be the case with Eai defined by (77) if there were two different indices El, Ez € I with
QEIVZ(”H-UTH-I) Q;zvz(ﬂiﬂ’fwl)
Qzl,l(ﬂm’fm) Qﬁz,l(llm’fm) )

Moreover, since S; is not a singleton, definition (76) implies

Qn2(pit1, 7i+1)* = Qui(His1, Tis1)Qna(Mis1s Tiv1)s (81)
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for all ne€I, UIl, ((81) naturally holds for n& I, UI, if Cy{I; UL} # @, because both sides of (81) are zero) by recall-
ing (60) (because if (81) does not hold , it follows from (60) that there exists n € I UI, such that det(G,(pi+1, 7i+1)) # 0,
which implies S; defined by (76) is a singleton: a contradiction). According to (81), (55)-(57), and the fact that the
Cauchy-Schwarz inequality holds as equality only when two functions are linearly dependent, we obtain the existence
of constants inl € R, inz € R such that

Gn, 2(t, His1) = An n 1 (t, piv1), M € L, (82)
G, 1 (t piv1) = An,8n 2t pi1), M2 € L, (83)

for t € [pir1,7i41] (notice that g, 1(f, uir1) and gu (L, piy1) are not identically zero on t € [uiy1,tiy1] because of
Qn,.1(Mis1, Tig1) # 0 and Qp, 3(Hir1, 7iy1) # 0). Recalling (79), (80), we obtain from (55)-(57) and (82), (83) that

8y 2(ts Hig1) = Jagnya(t piis1), My €I, (84)
8,1 (L, piv1) = ;gnz,z(t’ Hir1), N2 € D, (85)
for t € [pit1, 7iv1]- Equations (84) and (85) holding is a necessary condition of the hypothesis that S; is not a singleton.

The remaining proof of Case 4 is divided into the following three Claims.

Claim 1. If S; is not a singleton, then A#0,4 #0and A = % in (84) and (85).

Proof. The proof is shown in Appendix B. (]
Claim 2. Equations (84) and (85) (E #0,A; #0and A = %) hold if and only if z[t] + aw[t] =0 (E # 0) for t € [piy1, Tiz1]-

Proof. The proof is shown in Appendix C. n

Claim 3. The function z[t] + Aw[t] (E # 0) is not identically zero for t € [pit1, Tiv1]-
Proof. The proof is shown in Appendix D. (]

Recalling Claims 1-3, we know that (84) and (85), which is a necessary condition of the hypothesis below (78) that
S; not be a singleton, does not hold. Consequently, S; is a singleton, that is, S;={(q1,g>)}. Therefore (61) shows that
q,(ti+1) = q1, §,(7i+1) = q2. The proof of Case 4 is complete.

If §,(z;) = q1 (or §,(r;) = q») for certain i€ Z,, recalling (61) and the analysis in the above four cases, we have
that §,(tiy1) = q1 (or §,(tiy1) = q2). Repeating the above process, we then have that §,(t) = q1 (or g,(t) = q) for all
t € [13, limy_ oo (7%)).

The proof of Lemma 3 is complete. ]

5 | MAIN RESULTS

Theorem 1. With arbitrary initial data (2o, wo)T € L2((0,1);R?), & € R, and 6, = (q q, )T, for the plant (1)-(5) under the
adaptive certainty-equivalence boundary controller (36) where the regulation- trlggered BaLSI is defined by (37), (61) with
(38), (40), (41), (47), the closed-loop system satisfies the following properties:

(1) The Zeno phenomenon does not occur, that is,

limz; = +oo, (86)
1—00
and the closed-loop system is well-posed.
(2) If the finite time convergence of parameter estimates to the true values does not occur, €(t) reaches zero in finite time
—, that is, Q(t)_OontE[ 00).
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(3) If the parameter estimates converge to the true values in finite time, there exist positive constants My 5, A1 such that
Q(f) < My 30,/Q0)e™ ", t>0, (87)

where Q(t) is given in (24), and M, 5, is a family of constants parameterized by positive constants qi1,qz, §,(0), 3,(0). The
decay rate Ay is the same as the nominal control result in (26).

Proof. First, we propose the following claim about the sufficient and necessary condition of the finite time convergence
of parameter estimates to the true values.

Claim 4. When §,(0) # q; (or §,(0) # q2), the estimate g, (t) (or §,(¢)) reaches the actual value q; (or g;) in finite time if
and only if z[¢] (or w[t]) is not identically zero on ¢t = [0, lim;_,«(1;)).

Proof. The proof is shown in Appendix E. [

(1) Now we prove the first of the three portions of the theorem. First, if the estimates §, (¢), §,(¢) reach the true values
in finite time 7., we have that 7; = 7, + (j — €)T, j € Z,,j > €. The proof of this is shown next. We prove by induction that
7i.1 = 7+ T fori > e. Let i > € be an integer. Notice that (23) holds for all t € [z}, 7;41). Assume that Q(z;) # 0. By virtue of
(26) and since (23) holds, we have

Q1) < Y., Q(m), (88)
for all t € [z;, 7;41). It follows that
Q) < Yy, Qm) < Yy 1+ a)Q(1y), (89)

for t € [1;, 7141) Where a is positive. Therefore, we get from (38), (40) that 7., = 7; + T for i > ¢. The same conclusion
follows from (38) and (41) if Q(z;) = 0. Therefore, lim;_, (7;) = +o0.

If the finite time convergence of the parameter estimates to the true values is not achieved, the proof is divided into
the three cases.

Case 1: We suppose that the estimate q,(t) does not reach g, in finite time but g, (¢) does reach g, in finite time. The fact
that q,(¢) does not reach g, in finite time impliesw[¢t] =0on ¢ € [0, lim;_,(z;)) according to Claim 4, and §,(t) = §,(0) # @2
ont € [0,lim;_(7;)) according to Lemma 3. The fact that g, (¢) reaches g, in finite time implies 4, (f) = 0 after a certain zy.

Inserting (36) into (5), we obtain

1
w1, 1) = Qz(O)/ (L, y;4,(0), G(0)w(Y, Hdy + §,(0)A(1; G, (), §,(0)E () + q, (Hz(L, D). (90)
0

Considering w[t] =0 and §,(t) =0 on ¢ € [7},lim;_ (7)), we obtain from (90) that {(¢) =0 on ¢ € [z, lim;_ (7))
because of §,(0) # 0 and A(1;§,(¢), §,(0)) # 0. Recalling (1), considering w[t]=0 on ¢ € [0, lim;_,(7;)) and {(¢) =0 on
t € [y, lim;_,«(73)), it further follows that £(0) = 0, that is, {(f) = 0 on t € [0, lim;_,(;)), which means that z(0,f)=0 on
t € [0,lim;_, o (7:)). It follows that Q(t) defined in (24) is nonincreasing on t € [0, qi]. Therefore, we have that lim;_, ,(7;) >
qi according to the definition of triggering times (38), (40), (41). By virtue of (2), (4) and z(0,t)=0 on ¢ € [0, lim;_, (7)),

1
we have that z[t]=0 for t € [qi, lim;_,(;)). If Z[¢] is identically zero on ¢ € [0, ql], then §,(0) = q; (because z[t] =0 on
1 1
t € [0,lim; »(7:)), and g, (t) reaches q; in finite time only when the initial estimate is the true value according to Claim 4).
If z[¢t] is not identically zero in t € [0, ql), it implies that the initial condition z(x, 0) is not identically zero for x € (0, 1],
moreover, that 7y must be less than L and the function z(x, 0) is not identically zero on the interval (0, 1 — g, z¢] for x (oth-

q
erwise w[t] is not identically zero according to (90): a contradiction). The state z(x, t) propagates from its initial condition
z(x, 0), which is possibly not identically zero only on (0, 1 — g, 7], toward the boundary x =1 and finally vanishes not lat-
ter than t = qi (z(1,t)=0for t € [0, 7) and the nonzero values of z(1,f) on t € [z, qi] are eliminated by g, (t) = 0 in (90)).

Together with w(t] =0, {(t) = 0 on t € [0, lim; - (7;)), we conclude that Q(t) is nonincreasing in t € [0, qi], and Q) =0
1
fort e [ql, lim;_,(7;)). Therefore, 7; = jT, j € Z,, according to the definition of triggering times (38), (40), (41).
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Case 2: We suppose that the estimate §,(t) does not reach ¢; in finite time but g,(t) does reach g, in finite time.
The fact that g, (¢) does not reach q; in finite time implies that z(x,t)=0 on ¢ € [0, lim;_,(z;)) according to Claim 4, and
§,(t) = §,(0) # g1 on t € [0,1lim;_,(7;)) according to Lemma 3. Recalling (36), then (1)-(5) become

Z:(t) — e[(a_qlb6)+b(q2+q1p)£JtC(O) (91)
Wt(x7 [) = qZWx(xs t)s (92)
w(0, ) = Z£(), (93)
p
_eo [/ . B(0). 4 B (D)
w(l, 1) = P $(1,y:4,(0), (O, Hdy + A(1;4,(0), §(D)E D) | , (94)
0

t € [0,lim; (7). If£(0) = 0, then z[¢], w[t], {(¢) are identically zero on t € [0, lim;_,»(7;)) according to (91)-(93). Next, we
discuss the case of £(0) # 0. Considering z[t]=0on ¢ € [0, lim;_ (7;)), the dynamics for w[t], {(¢) given as (91)-(94), and

the definition of triggering times (38), (40), (41), we have that lim;_, ., (z;) > i . The equation w(0,1) = EC (t) (93) holding
for t € [0, lim;_, (7;)) requires the initial condition of w to be w(x, 0) = 9 C (0), for ensuring that (93)

holdson t € [0, qi], and w(1, t) to be

c [(a ‘11bc)+b(‘h+q1p) 1=
P

w(, f) = ;““ WGP () ¢ e [0, lim(z), (95)
=00

for ensuring that (93) holdson t € [ L limi (7))

Comparing (95), where w(l,t) i 1s a continuous function by virtue of (91), with (94) which includes possible discon-
tinuities in §,, the necessary condition for the Equation (93) to hold on ¢ € [0, lim;_,«(7;)) is that w(1, t) is a continuous
function. In other words, there is no discontinuity in Case 2. Considering the state of the w-PDE in (92) propagates from
x=1 to x=0 with the propagation speed q,, by representing the function w(y, t) as the future value of {(¢), using the
expression for {(t) given by (91), then the relation (94) is written as

w(l,t) =

[ / ¢(1.y:4,(0), Q2(t))c a-aubertbaran 15y g
+4(1;4,(0), qz(t))] s, t>0. )

Comparing (95) and (96), applying (15), (16), the necessary condition of w(0,t) = I%C (t) (93) always holds on ¢t €
[ limioo(z)) (When £(0) # 0), s

q>

1
1 [/ CKbeﬁ(a—fh(O)bc)(l—y)e[(a—qlbc)+b(q2+q1p)!-CJ]iydy
o P

q,(H)x eRr @O | _ € la-gborbaranilz (97)
q,(0)p +q,(t) p

ont € [0,lim;_,«(7;)). The right-hand side of (97) is constant while the left-hand side of (97) includes g, (), whose potential
values are @5, §,(0) because of Lemma 3. If the left-hand side of (97) is varying with g,(t), then (97) does not hold. If the
left-hand side of (97) is kept constant with §,(f) = g2 and §,(¢) = §,(0) (such as §,(0) = g,), since, as we mentioned above,
there is no discontinuity in Case 2, (97) holds only when the design parameter « is equal to «*, where

o = S92 Ja-mberb@tap 1
p

(a—ql(O)bc)

. bc —<a 2Ob1-y) (@~ 91beI+b(@ 4¢P 51y dv + qze 08

+ y+ —7"— . (98)
0 p q:(0)p + g2
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where the symbol + denotes division. The constant x* is positive because b>0, ¢>0, p>0, g1 >0, g, >0, ,(0) > 0.
The positivity of ¥ = k* contradicts ¥ < 0. Therefore, Case 2 would happen only when ¢(0) = 0, where Q(t) = 0 on
t € [0,1im;_,(7;)). Therefore, 7; = jT,j€ Z,.

Case 3. If neither of 4, (¢), §,(¢) reach qi, g, it follows that z[¢], w[¢], {(¢) are identically zero on ¢ € [0, lim;_,»(7;)), that
is, Q(t) = 0 on ¢t € [0, lim;_,(7;)), according to Claim 4 and (4). Therefore, 7; = jT, j € Z, according to (38) and (41).

By virtue of the results in the above discussions, we have that lim;_, ,(z;) = +00. The well-posedness of the closed-loop
system is then obtained by recalling Proposition 1 and lim;_,(z;) = +o0. This completes the proof of portion (1) of the
theorem. The fact that lim;_, (7;) = +o0 allows that the solution is defined on R, .

(2) Now we prove the second of the three portions of the theorem. Recalling the results in the discussions in Cases 1-3

in the proof of portion (1), and lim;_, ., (z;) = +o00, we conclude that Q(¢) reaches zero not latter than qi, that is, Q(t) = 0 on
1

te [l, o), when the finite time convergence of the parameter estimates to the true values is not achieved. Thus, portion

4
(2) of the theorem is obtained.
(3) Finally, we prove the last of the three portions of the theorem, that is, establishing the exponential regulation result
when estimates (g, (t), 3,(t)) reach the true values (g1, g2) in finite time z, that is, when

(Ah(t) = qlv qz(t) = q2’ [ 2 TE' (99)

Define a Lyapunov function

1 1
V() = %ra / P B(x, 1)2dx + %rb / e~ (x. )2dx + %Zj(t)z, >0, (100)
0 0

where the positive constants r,, 13, 6 are constrained through the inequalities (10), (9), (28). Denoting
Q) = llaldlll* + AL + £ @7,
we obtain
&1 () S V() <6, 20, (101)

where the positive constants &, & are shown in (31) and (32).
Define the errors between the gains in the nominal control law (23) and those in the certainty-equivalence controller
(36), caused by the parameter estimate errors, as

G =q1 =, (), (102)
R, 1) = q20(1,y: q1. 42) — G (OP(L, 5§, (1), G, (1)), (103)
Ry(t) = q24(1;q1, 2) — G, (DAL §1(8), G5(D)), (104)

where ¢(1,y; G, (0), §,(1)), A(1; §;(2), q,(1)) are the results of replacing g1, g2 with §; (1), §,(¢) in ¢(1, y; q1, ¢2) and A(1; g1, G2)-
Because of (99), g, (t), Ri(:, 1), Ry(t) are zero for ¢ > z,.

Applying the adaptive control law (36), recalling (23), the boundary condition (21) in the target system (17)-(21)
becomes

1
pa. 1) = é[fh(t)z(l,t) —/ Ri(y, Hw(y, dy — Ra(DE(D)]. (105)
0

Applying the Cauchy-Schwarz inequality into the backstepping transformation (13), (14) and its inverse

Z(x, 1) = a(x, ), (106)

= By, dy - —5—en¢(r), (107)

X K_be
2 (g2 + q1p)

w(x, t) =p(x,t) — /

0
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we have that Q;(¢) is bounded by
&3Q() < Q1) < &Q(1), 20, (108)
where the positive constants &, & are defined by (33)—(35).

Taking the derivative of (100) along (17)-(21), (105), applying Young’s inequality and the Cauchy-Schwarz inequality,
we get

. 1 Q2T (q1p + q2)°b?
V() < - (Em - QIrbC(Z)) c()? —( >~ qirp’ - T)ﬁ(O, 1?
1 ! 56X 2 1 ! —6X 2
— =746Q> e f(x, ) dx — =rpéq1 e *a(x, t)*dx
2 0 2 0
= Zqne b a(L 7 + SquraepL, 0% (109)
for t > 0. Recalling (9) and (10), then (109) becomes
V() < V(O + S qarae 51,02 (110)

for t > 0, where the positive constant /; is shown in (27). Multiplying both sides of (110) by e*!, yields

d(V(t)eh!
dver) < 1e’11‘q2rae5ﬂ(1,t)2, t>0, (111)
dt 2
and then, integrating from z, to ¢, we obtain
‘1
V(tyeh' — V(z)eh™ < / €1 Qo€ pL dg, 2 7. (112)

€

Recalling (105) and the fact that g, (), R1(t), R,(¢) are identically zero for t > 7., we get f(1,t) = 0 for t > 7, according
to (105). Therefore, the term /. ! %e’“g q2ra€f(1,¢)*dg in (112) is zero. Multiplying both sides of (112) by e~4, yields

V(t) < V(e ), 1>, (113)

Recalling (101), we get
Q1) < ?Ql(fg)e_’“(’_"), t> 7.
1

Recalling (108), we further have that
Q) < YoQr)e M%), t> 1, (114)

where the overshoot coefficient Y, is shown in (30).
If 7, = 0, we obtain directly from (114) that Q(f) < Y¢Q(0)e "/, t > 0. Next, we conduct analysis for ¢ € [0, 7,] when
7. # 0. Recalling (13), (105), (109), (110), we obtain

S 1
V) S ~hVO) - <§q1rbe-5 - @ - g1)2> (L0 + [ | Rootw ol Raocer | @

2 0

for t € [0, 7. ]. Recalling (28), which makes the coefficient in the parentheses in front of a(1, £)? positive, and recalling
R1(y, 1), Ry(t), defined by (103)-(104), where g, (¢) is equal to either §,(0) or q; and §,(¢) is equal to either §,(0) or g, in
t € [0, 7.] according to Lemma 3, as well as applying (107) and the Cauchy-Schwarz inequality, we obtain from (115) that
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V(t) < = V() + Q(4,(0),3,0),q1, @)V (1), te[0,7.], (116)
where the positive constant Q(g,(0),§,(0), g1, qz), obtained by bounding the last line of (115), is a family of constants
parameterized by positive constants qi, g2, §;(0), §,(0).

If A1 < Q(§,(0),§,(0), q1, g2), defining a positive constant
AZ(Q1(0), qZ(O), ql’ QZ) = Q(Q1(0)e Q2(0), ql’ QZ) - A’ls (117)

multiplying both sides of (116) by e~%(@1-%:(0.4::92)¢ e obtain

V(t)e—/lz(fh(O),Qz(O),qlqu)t — 22(§,(0),4,(0), q1, qz)V(t)e—/lz(ql(o),flz(o),%,qz)t <0, (118)

for t € [0, 7], that is,

d(V(t)e @1 ©-8:(0.9:1.9)t)
<

pr 0, (119)
for t € [0, 7.]. Then, integrating from O to ¢, yields
V() < V(0)e2 @ O8O0 ¢ e 0, 7,]. (120)
Recalling (101), (108), we get
Q) < YpQ(0)eR @ OLOa e 1 e 10, 7,]. (121)
If A; > Q(q1(0), g2(0), q1, g2), by defining a positive constant
43(41(0), 4(0), g1, 92) = A1 — Q(g,(0), §,(0), 91, G2). (122)
we obtain from (116) that
Q(f) < YoQ(0)e 4@ @809 ¢ e [0, 7,]. (123)
Comparing (121) and (123), we obtain
Q1) < Ypeh @O L0407 0Q(0), t € [0, 7,]. (124)

Let us now recap that Assumption 2, that is, (8), is only used to ensure the existence of a positive § satisfying
(28), which enables going from (115) to (116), with the purpose to arrive at (124). In plain words, Assumption 2
is only used in the Lyapunov analysis when the estimate §,(f) has not reached the true value q;, in order to
ensure (124).

Recalling (114), we conclude that

Q) < Ygeiz(%(o),%(oxq],qz)ff elﬂsg(o)e—ilf’ t>0. (125)

Claim 5. If 6(t) reaches 6 at ,, then 7, < max{qi + T,2T}.

Proof. The proof is shown in Appendix F. n
Applying Claim 5, (125) is written as

A ~ 1 1
Q(t) < Y36/12(q](0),qz(0),q1,qz) max{ E+T,2T}eﬂl max{ E+T,2T}Q(O)e_,11[’ (126)
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for t > 0. Denoting

2 A(@,(0).4,(0).,.9,) max{ = +T.2T} A max{—+T2T}
M, 00 = Yse a2 e a2 ,

we obtain (87). This completes the proof of portion (3) of the theorem.
With the proof of Theorem 1 completed, we thank the reader for sticking with us for the nearly six-page ride and
commend the reader’s stamina. n

6 | SIMULATION
The simulation is conducted for the plant (1)—(5) with the model parameters taken as
a=13,b=1,c=2, p=0.5, (127)
c=1,q =4, q, =6, (128)
where q;, g, are treated as unknown, with the known bounds
=69 =2,9,=7,q =3. (129)

The initial values for the test are chosen as

z(x, 0) = cos (nx + %) +x3, (130)
w(x, 0) = sin <1.57rx + %) ¥, (131)
(O = 220,0)+ 2w(0,0) (132)

The finite difference method is adopted to conduct the simulation with the time and space steps of 0.0001 and 0.01,
respectively.

For the regulation-triggered batch least-squares identifier defined by (37), (38), (40), (41), (47), (61), we choose
n=1,2, ... ,7and

=08, N=1, T=38, (133)

and take the initial values of the estimates as §,(0) = q q,(0) = 9, namely, we start the parameter estimates from their
lower bounds. Using the given bounds in (129) to determlne the gain x in the controller (36) by (12), a control gain
satisfying k¥ < —267 is needed. For ¥ = —320, recalling the model parameters in (127) and (128), we obtain r, <0.079,
rq > 0.06 according to (9), (10), which indicates that g, — q, needs to be smaller than 4.01 according to Assumption 2
(satisfied by the known bounds of g; given in (129)). The source of the high gain « is the first term of (12) which is used
in Claim 3 to exclude some rare and extreme situations (wW(x, {) =M and z(x, t) = —AM for x € [0, 1], t € [pis1, 7i+1] Where
M, 4 are nonzero constants) affecting the exact parameter estimation. In the simulation, we find the high gain is actually
not needed (the aforementioned extreme situations do not happen) and x = —6 derived from the second term in (12) is
perfectly sufficient to achieve a satisfactory result. According to the initial values of the estimates g,(0) §,(0), we get a
large initial value Y 5 by (30)-(35), (9), (10), which is a conservative value obtained by the stability analysis in Section 5.
In this simulation, guided by reason rather than by a highly conservative estimate, we adopt a smaller initial value as
Y4, = 5.5, which prevents the activation of the identifer from being extremely late (particularly relative to T).

From Figure 2, we observe that the estimates q,, q, reach the exact values of the unknown parameters g; =4, g, =6 at
t=0.13 s, in just one trigger. In Figure 3, the nominal control input applied at the boundary x =1 goes through the PDE
domain and reaches the boundary x =0, starting to regulate the ODE state {(f) at t = qi ~ 0.17s. As shown in Figure 2,

2
the estimates reach the true values and update the certainty-equivalence controller at t =0.13s. Then it takes 1/q, % 0.17s
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7, : : r T FIGURE 2 Parameter estimates g, (t), q,(¢)

w
1

Time [s]

T T T FIGURE 3 The evolution of |{(f)| under the nominal control (23)

---Nominal Control and the proposed adaptive regulation-triggered control (36)
— Adaptive Regulation—Triggered Control

w

1@l

Time [s]

for the updated control signal to travel to the ODE, that is, the updated control signal starts to properly regulate the ODE
state {(t), as intended by the nominal controller, at t = 0.3s. For the remaining time, as shown in Figure 3, the performance
of the proposed adaptive controller coincides with the nominal feedback, and |{(¢)| converges to zero. Similar results are
observed in Figure 4 which shows the evolution of Q(t)% defined by (24), under the nominal control and the proposed
adaptive regulation-triggered control. Figures 5 and 6 show the PDE states z(x, t), w(x, t) are regulated to zero under the
proposed adaptive regulation-triggered controller. The adaptive regulation-triggered control law and the nominal control
law are shown in Figure 7.

At the end of this section, and this paper, let us reiterate that, as announced at the beginning of this paper, that
the BaLSI identifier has ensured the perfect identification of the unknown parameters in finite time and enabled the

7 . ; : :
6f ---Nominal Control :
5 — Adaptive Regulation—Triggered Control | |
e 4 4
S3 1
2 .
1 -~ 4
GO 1 B S 3‘ 4 S FIGURE 4 The evolution of Q(t)é under the nominal control (23)
Time [s] and the proposed adaptive regulation-triggered control (36)

FIGURE 5 The evolution of w(x, t) under the proposed adaptive
X t regulation-triggered control (36)
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FIGURE 6 The evolution of z(x, t) under the proposed adaptive
regulation-triggered control (36)

FIGURE 7 The control signals of the nominal control (23) and 40 T T T T
the proposed adaptive regulation-triggered control (36)

---Nominal Control

—40) —Adaptive Regulation—Triggered Control

Time [s]

regulation-triggered adaptive backstepping controller to achieve exponential regulation, with a decay rate matching the
rate corresponding to the case of known parameters.

7 | CONCLUSIONS

In this paper, we have proposed an adaptive boundary control scheme for a heterodirectional transport PDE-ODE system
where both transport speeds are unknown. It is a certainty equivalence-based adaptive boundary control scheme using a
batch least-squares identifier updated at a sequence of times, which are determined by an event trigger designed based on
the progress of the regulation of the states. We have proved that the proposed triggering-based adaptive control guarantees:
(1) the absence of a Zeno phenomenon; (2) parameter estimates are convergent to the true values in finite time (from
most initial conditions); (3) exponential regulation of the plant states. The effectiveness of the proposed design is verified
by a numerical example.

In future work, the state-feedback control design will be extended to the output-feedback type to meet the require-
ments of more engineering applications. While the present work considered model-based adaptive control of a string-ODE
cascade, one could also bring to bear, in certain applications, the extremum seeking control algorithms in the presence of
wave PDE dynamics, introduced in Reference 53. One application would be deep-sea cable-actuated source seeking, with
a sensor, deprived of position awareness due to the undersea environment, hung on a cable, moved through the cable from
the sea surface using a surface vessel, and tasked with being located as close as possible to a signal source. The algorithm
in Reference 53 is applicable to such a source-seeking scenario and would, in addition to finding the signal source, sta-
bilize the motion of the cable. The deeper the signal source, that is, the longer the cable, the easier the problem would
become from the perspective of the surface vessel (the high natural frequency of the long cable would not necessitate
rapid motion of the vessel), but the lengthier memory would be required in the PDE-compensating extremum seeking
algorithm in Reference 53. Additionally, oil drilling penetration maximization, through the drill-string PDE dynamics,
could be pursued in a model-free adaptive fashion as in Reference 54.
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APPENDIX A. THE PROOF OF PROPOSITION 1

Inserting (36) into (5), the closed-loop system is

£ = (a— q1bo)s (1) + b(qz + q1p)w(0, 1), (A1)

2e(x, 1) = —q12x(x, 1), (A2)

wi(x, 1) = @awx(x, 1), (A3)

200, ) = c£(t) - pw(0, 1), (A4)

w(l, ) = éqz(m /0 Ly Bmw. Dy + iqz(mm; Bt + ql_q—‘zl(“)z(l, D), (AS)

for t € [71, 7141),x € [0,1], i € Z,., where 0(7;) = (4, (1), §,(z)T is constant and defined by (37), (38), (40), (41), (47), (61).
With the purpose of decoupling the ODE and the PDEs, we introduce two transformations. The first one is the following
Volterra transformation:

Z(x, 1) = z(x, 1) — / d(x = y)2(y, Hdy — B¢ (1), (A6)
0
where the functions ¢ and 5 satisfy
019 () + <(a —q1bo) + s(fh + qlp)c> @(x) =0, (A7)
»(0) =c, (A8)
$) = ——G0Ib(g> + qup). (A9)
q1p

Through the transformation (A6), (A16), the system (A1)-(A5) is converted to

£(t) = (@ — @boXC (1) + b(ga + w0, 1), (A10)
206 1) = —qiZ6, B), (A11)
Wt(x’ t) = qZWX(xs t)’ (A12)
z(0,t) = —pw(0, t), (A13)

A 1 . —qy(z; T _

wt, = L2004 Lo / (L, y: Dy, ndy — L1 / T — )20, Ody,
q2 q2 0 q2 0
+ [iqzm)m; B(z) — ql_—ql(fi)?(l)] ¢, (A14)
92 q>

for t € [1;, 7i41), X € [0, 1]. The conditions (A7)-(A9) of the functions @ and ¢ in the transformation (A6), (A16) are
obtained through matching (A1)-(A5) and (A10)-(A14), as follows. Inserting (A6) into (A11), using (A1), (A2), (A4), we
obtain

Ze(x, ) + iz (%, ) = 2:(x, ) + qu / D(x — Y)z(y, Ddy — B(x)(@ — q1be)C ()
0

— POb(q2 + pIW(O, £) + q12x(x, 1) — q1h(0)Z(x, 1)
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- / 018 (x — )20 Ddy — 13 (L(8)
0

= q19(0)z(x, ) — q1()2(0, 1) — 1 H(0)z(x, ) — ¢1 P (X)E (D)
—pXx)(a - qi1be)¢ (1) - %5@)[3(‘]2 + q1p)eC(t) + éi(x)b(qz + q1p)z(0, 1)

= [éa(x)b((b +qp) - q@(x)] 200, ) - [@(x)(@a — qibe) + %a(x)b((b + qp)e+ @@ (1C(®) = 0.
(A15)

_ For (A15) to hold, we obtain the conditions (A7), (A9). Matching (A4) and (A13), we get the condition (A8). Because
¢ is a continuous function, we have that the inverse transformation

X
260 =000~ | 20,0y = FOK (A16)
0
exists (see, e.g., chapter 9.9 in Reference 55), where the well-posedness of y, ¥ is ensured by the well-posedness of

(A7)-(A9).
Applying the second transformation

1 1
X =C@) - / Kqi(0)z(x, t)dx — / Koi(xx)w(x, t)dx, (A17)
0 0

for t € [7;, 7141), i € Z,, where the functions Kj;, K»; satisfy the following well-posed first-order ODEs:

[(@ — q1bo) + Kai(1)((q1 = 43 (z:)7(1) — o7 A(L; B(z)IK1i(x) — quKai’ (¥) = =Ko (1)(q1 — §, (2))wr(1 = X), (A18)

[(@ — g1be) + Kx(1)((q1 — §;(z))7(1) — G5 (z)A(L; 0(z)]Kai(X) + 2K’ (%) = Kai(1)3,(z0) (1, X; O(1y)), (A19)
Kii(D)g1 = Ki(1)(q1 — §,()), (A20)
K5i(0)q2 = —b(q2 + q1p) — pK1:(0)q1, (A21)

the system (A10)-(A14) is transformed to

7)) =Aix (@), (A22)

Z(x, 1) = —qazx(x, 1), (A23)

WX, ) = Gawy(x, D), (A24)

(0, 1) = —pw(0, 1), (A25)

w(l, ) = ql_q—‘zl(f")z(l, 0+ /0  DyCowte dx + /0 ' Dy (G, D + D1 1) (A26)

for t € [7;, 7i41),x € [0, 1], where

Ai = a - qibe + Kx(1)(q1 — §,(z)7 (1) — Ku(1)g, () A(L; 0(z1)),

Du¥) = — 4, (r)p(L.x: () + (iqz(r»z(l;ém» - ql_—w")ﬂl)) Kii(x),
q> q2 q>

Dot = - L2 4 <iq2<n)z<1; B(z) — ql_—ql(“)?(l)) Ky(x),
q> q2 q2

1— ql(fi)?(l).
q>

1. ~
Dy = g, A(L; B()) — 2
q>

85UB017 SUOLILLIOD BAIFeR1D) 3|qedlidde auy Aq pausenob ake sSppiie VO ‘s o SaInJ 10} A%eiq 1 8UIIUO A8|IM UO (SUORIPLIOD-PUR-SSY W00 A3 | 1M Ae1q 1 [pUIUO//STRY) SUORIPUOD PUe SWis L 841 385 *[6202/€0/r2] Uo AfiqiTauliuo A8|Im ‘AISRAIUN UBWRIX AQ 6/2€'SIe/200T 0T/I0p/u0o A8 Im AReiq Ul juo//Sdny WwoJy pepeojumod ‘g ‘T20Z ‘STTTE60T



1538 WANG AND KRSTIC
WILEY

The conditions (A18)—-(A21) of Kj;(x), K»i(x) are defined by matching (A10)-(A14) and (A22)-(A26), as follows.
Inserting (A17) into (A22), using (A10)-(A14), we obtain that

2 —Aiy (0
= 7() = (a = q1bo) (1) — (Kz(1)(q1 — §;(w))7 (1) — Kai(DG,(7) A(L; O(z:))) x (1)

=) - /0 1Ku(x)zt(x, t)dx — /0 IKZi(x)w[(x, t)dx

—(a = q1bc)¢(t) + (a — q1be) /01 Kii(0)z(x, H)dx

+(a — q1bc) /01 Kai(w(x, 0)dx — (Kai(1)(q1 = §,(2))7(1) = Ku(1)Q(2)A(1; () 1 (¢)
=b(q2 + qipw(0,0) + q /01 K3i(x)z(x, )dx

- /0 1Km-(x)wx(x, t)dx + (a — g:1bc) /0 1Kli(x)Z(x, t)dx

+(a — qibc) /01 Kaoi(w(x, dx — (Ka(1)(g1 — §, ()7 (1) — Kai(1)3,(z) A1; (7)) ¢ (1)
= b(g2 + qipw(0, 1) + K1:(1)q1z(1, 1) — K1:(0)¢12(0, 1) — /01 Q1K' (0z(x, Hdx

— K7 (1)gaw(1, t) + K5;(0)g2w(0, ) + '/01 2K (yw(x, t)dx

1 1
+(a — q1bo) / K1i(0)z(x, t)dx + (a — q1bc) / Kai(x)w(x, H)dx
0 0

— Ka(D)(q1 = §;(z)7 (1) = KD, ()AL; (1)) x (£)
1. ! A 1. L Q1 — G, (z)_
= —K(Dq2[—85(7) [ &1, y; 0(z)w(p, Hdy + | —q,(z)A1; 0(7;)) — —————r(1) | (@)
qz 0 q2 q2
q1 — Q1(Ti)_
—
q>
+ (K2i(0)q2 + b(q2 + q1p) + pK1:(0)g1)w(0, t)

_A . 1
+ (10— qlq—‘il(” / V(L - )2, 0dy] + Ku(DH@1z(L, o)
0

1 1
+ / (q2Kai (%) + (a — q1bo)Kqi(x))wix, t)dx + / ((a — q1bo)Kqi(x) — 1Ky’ (x))z(x, t)dx
0 0

— (Kai(1)(q1 = §;(z))7 (1) — K1), (7)) A1 O(2))) ()
= (Ki(Dg1 — Kzi(1)(g1 — §,(z))Z(L, £) + (K2(0)g2 + b(g2 + q1p) + pK1i(0)q1)w(0, 1)

1
+ / [q2Kai’ (%) + (a — q1bO)Kai(x) — Kai(1)@, (1) (1, x; (7)) + (Kai(1)(q1 — G, (z:)r (1)
0

1
— Koi(1)8,(7:) A(L; B(z))) Koy () w(x, D)dx + / [(a — q1bo)Kyi(x) — 1K' (%)
0

+ Koi(D(q1 — ¢ (z)w (1 — %) + (K2i(1)(q1 — 4 (z)y (1)
— Kai(1)3,(z) A(L; (x)) Ky (0) R, t)dx = 0. (A27)

For (A27) to hold, the conditions (A18)-(A21) are obtained.

The equation set (A23)-(A26), where y(t) is a well-defined external signal generated by (A22), has an analogous
structure with (5), (6) in Reference 56. According to the result in the part 1) in appendix of Reference 56, we have
that the system (A22)-(A26) has a unique solution on t € [r;, 7;41) for all (W[r;],z[%])T € L2((0,1); R?), y(r;) € R. By
virtue of the transformations (A17), (A16), we obtain that, for given (w[z;],z[n:])T € L*((0,1); R?), {(r;) € R, the sys-
tem (A1)-(A5) has a unique solution for ¢ € [;, 7;41). Recalling the definition of the weak solution in Definition 1,
we obtain that for every (z[z;], wlz])T € L2((0,1); R?), {(z;) € R and 6(r;) € O, there exists a unique (weak) solution
(z,w)T, &) € CO([r1, 1111, L2(0,1); R?) X CO([1;, 7141 1; R) to the system (1)-(5) with (36), (37), (38), (40), (41), (47), (61).
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For every (2o, wo)T € L2((0,1); R?), & € R and 6, € O, through iterative constructions between successive triggering
times, the proposition is thus obtained.

APPENDIX B. PROOF OF CLAIM 1

If A = 0, it means that Qn,2(His1, Tiy1) = 0 by recalling (85) and (56), and then £, = Hrgalltinfin) 3 (78). Together with (77),

an.S(”i+1’Ti+1)
we get

Hy a(piv1> Tiv1)  Hpy2(Hiv15 Tiv1) Qny2(iiv1> Tiv1)  Hi, 2(Mit1s Tiv1)
S; = , (B1)

Qna(Mit1: Tis1)  Qny3(Mist, Tiwr) Qny 1 (Min1 Tiw1)” Qny 3 (i1, Tiv1)

is a singleton: a contradiction. Similarly, if 21 = 0, it means that Qn, 2(His1, Ti1) = 0 by recalling (84), (56), and then ¢, =

Hnl.l(ﬂm»fm) :

in (77). Together with (78), we get

in,l(."’i+1’7i+l)
S = { <Hn1,1(ﬂi+1,‘t'i+1) Hy, o(piv1, Tiv1)  Hpy 1 (41, Tiv1) an,z(ﬂi+l»Ti+1)> } (B2)
l Qnya(Mit1: Tis1) " Quy3(ints Tiv1)  Quy 1 (Min1s Tiv1) Qny 3 (it Tiv1) '
is a singleton: a contradiction. Therefore, A#0,1; 0.
According to (45) and (46) and A # 0, A; # 0, we obtain from (84) and (85) that
t 1 1t 1
/ Ny / sin(xzn)z(x, )dxdr = —— ny / sin(xzn, )w(x, )dxdr, n; € I, (B3)
Hin 0 /11 Hita 0
t 1 ot 1
/ Ty / sin(xzn,)z(x, )dxdr = —A / b7} / sin(xzny )w(x, t)dxdr, n; € I, (B4)
Hiv1 0 Hiv1 0

for t € [pit1, 7iva]- According to the continuity of the mappings r — /01 sin(xzn)z[r]dx and r — /01 sin(xzn)w[rldx,n € N
(a consequence of the fact that z € CO([uiy1, 7i41]; L2(0,1)) and w € CO([uis1, Tis1]; L2(0, 1)), (B3) and (B4) imply

1
/ sin(xzn; )(z(x, 7) + _iw(x, )dx =0, n; €I, (B5)
0 M
1 —
/ sin(xzn,)(z(x, 7) + Aw(x, 7))dx =0, n, € I, (B6)
0

for = € [ui41, Tiv1]. We then prove I; =1, in (B5), (B6). If I, includes elements not belonging to I;, there exists n, €I,
with n, & I such that /01 sin(xzn,)z(x, 7)dx = 0 on T € [piy1, Tiv1] due to the fact that Qp 1 (pit1, 7ir1) = 0 for n ¢ I; with
recalling (55) and (45), and then

1 1
/ sin(xzny)(z(x, 7) + Ew(x, 7))dx = / sin(x;rnz)Zw(x, 7)dx, (B7)
0 0

which is not identically zero on 7 € [pi41, 7ir1] because of Qp, 3(uir1, 7i41) # O together with (57) and (46) and 2 # 0. This
contradicts (B6). Similarly, if I; includes elements not belonging to I,, there exists n; € I; with n; & I, such that

1 1

/ sin(xzng )(z(x, 7) + _iw(x, 7))dx = / sin(xzny)z(x, T)dx, (B8)
0 A 0

which is not identically zero on 7 € [ui1, 7i41] because of Qy 1(sit1, 7ir1) # 0 together with (55) and (45), where

/01 sin(x;ml)%w(x, 7)dx = 0on t € [yiy1, Tir1] is due to the fact that Qp,3(pit1, 7ir1) = 0 for n & I, with recalling (57) and

(46). This conltradicts (B5). Therefore, we conclude I; =1, in (B5) and (B6).
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We then prove A= % by contradiction. If - % # 0, recalling I; =1, and (B6), then we obtain

1 1
/ sin(xzng )(2(x, 7) + _iw(x, 7))dx = / sin(xzny)(z(x, 7) + (_i — 14 Hw(x, 7))dx
0

ﬂ,l 0 1

1 1
= / sin(xwn,)(z(x, 7) + Aw(x, 7))dx + / sin(x;mz)(_i — Dw(x, 7)dx
0 0 M

1
= <_i - E) / sin(xzn,)w(x, 7)dx, (B9)
/11 0

which is not identically zero for 7 € [pi41, 7i11] because of Qp, 3(uit1, 7i41) # 0 with (57), (46), which contradicts (B5).
Therefore A — % = 0. Claim 1 is proven.

APPENDIX C. PROOF OF CLAIM 2

According to (45), (46), the equations (84), (85) (A#0,2; #0and 4 = %) are equivalent to
1

1
/ sin(xrn)(z(x, 7) + Aw(x, 7))dx =0, n € L U T,. (C1)
0

If N =1, U, it means that (C1) holds for all n € N. If [, UI; C N, recalling the definitions of I, I;, we know that
fo1 sin(xzn)z(x, t)dx = fo1 sin(xzn)w(x, r)dx = 0 for n € Cy{I; UL} on t € [pis1, 7i41], and thus (C1) is equivalent to

1
/ sin(xzn)(Z(x, 7) + A, )dx =0, n=1,2, ... (C2)
0

on t € (i1, rl+1] Since the set {\/5 sin(nzx) : n=1,2, ... } is an orthonormal basis of L2(0, 1), if (C2) holds, it follows
that z(x, t) + Aw(x t)=0fort € [pis1, Tis1].
If z(x, ) + Aw(x, ) = 0 for t € [tiz1, Tiz1], then (C2), and (84), (85) (A #0,A; £0and A = _—) naturally hold. Claim 2

is proven.

APPENDIX D. PROOF OF CLAIM 3

The necessary condition for the equation z(x,?) + Aw(x, H=0 (E # 0) to hold on x €[0,1],t € [ui+1,7i+1] is that
z(x, £),w(x, t) are kept constant on x € [0,1],¢ € [ui41, 7i41] excluding finitely many possible points of discontinuity,
that is, w(x,t)=M and z(x,t) = —IM on x € [0,1],t € [Hit1, Tis1] excluding finitely many possible points of disconti-
nuity, where M is a nonzero constant (because z[t], w[t] are not identically zero on ¢ € [u;1, 7i11]). We prove this by
contradiction next.

Taking a spatial interval [x ,X,] € [0,1] with X, —x, < (q1 + 2)(7i+1 — pip1) (the position of the interval [x,,X,] is
arbitrary on [0,1], and (X,, #i+1), (X2, pi1) are not points of discontinuity of the functions w(x, t), z(x, t)), suppose that
there exist x,, x; (without loss of generality we assume X, <Xp) in the interval [x [_1,x2] with w(xg, piy1) # Wp, Hir1),
where (xg, iz1), (Xp, Hir1) are not pomts of discontinuity of the functions w(x, t), z(x, t). Also we know that z(x,, yi+1) =
—Aw(xa, Hir1) according to z(x, t) + Aw(x t) = 0 always holdingonx € [0, 1], t € [pit1, 7i+1]- Because the state of the w-PDE
propagates from x =1 to x =0, and the state of the z-PDE propagates from x =0 to x =1, with the respective propagation
speeds g1, g», according to the statement in p. 60 in Reference 52, which indicates that the system (2), (3) is equivalent to
a pair of scalar delay equations even if the solutions are not differentiable and even not continuous with respect to ¢t and
x, we get the following relationships:

W(Xp — 51G2, His1 + S1) = W(Xp, His1), (D1)
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2(Xg + 811, Hir1 + 1) = 2(Xa, Hig1), (D2)
for s; € [0, min{ %, I;ﬁ }1, where (xp — 5192, Miv1 + S1), (Xq + S191, Hiv1 + S1) are not the points of discontinuity because
2 1
(b, Hir1), (Xa, Mi+1) are not the points of discontinuity. There existsa s, = % such thatx, — s1q, =X, + 5191 =X, and then
1 2
we obtain

W(xe, te) = W(Xp, fit1)s  2(Xe, be) = 2(Xa, Hig1), (D3)

where X, = 22% € (x,X,), fe = pip1 + 222 € (pig1, T ] Tecalling X, — Xg <X — X, < (g1 + 2)(Ti41 — pis1). Because

Q1+, T+a;
2, piv1) = —AW(Xq, pis1) # — AWK, 1),
recalling 2 # 0and the hypothesis that w(xg, pi+1) # W, pit1), using (D3), we have
20X te) # —AW(xe, L),

with x, € [0, 1], t. € (4i+1, Ti+1]: a contradiction. Therefore, the hypothesis that there exist x,,x; in the interval [)_61,9_62]
such that w(x,, piy1) # wW(xp, ptiv1) (¢, pir1), (Xp, 4ir1) are not points of discontinuity) does not hold, and we then conclude
WX, Hit1), Z(X, pir1) are kept constant on x € [x,, X,] excluding finitely many possible points of discontinuity. Because the
position of the interval [)_cl,)_cz] is arbitrary on [0, 1] (with (X,» Hiv1), (%2, pi1) are not points of discontinuity of the functions
w(x, t),2(x, t)), and then we have that w(x, u;41), Z(x, pi+1) are kept constant for x € [0, 1] excluding finitely many possible

points of discontinuity. Taking a time increment s with 0 < s < 2max{1q o we have
1-42

WX, i1 +5) = WX + @28, Hir1) = WX, fiv),

for x € [0, %], with excluding the points of discontinuity of the functions w(x, t), z(x, t) along x € [0, 1], t = p;41, Where
se (0 !

nsur 1]. Al h
 Tmaxigigy] EOSU es X + ¢»s € (0, 1]. Also we get that

0%, Hiv1 +8) = 2(x — 15, Hiv1) = 2(X, Hir1),

for x € [%, 1], with excluding the points of discontinuity of the functions w(x, t), z(x, t) along x € [0, 1], t = pj1+1, Where
1

> 2max(q;.q,})

we have that z,w are kept constant in x € [0, 1],t € [tir1, Hir1 +

s€ (0 ] ensures x — g5 € [0, 1). Recalling that z(x, t) + Ew(x, t) = 0 always holds on x € [0,1],t € [yi+1, Tiv1],

m] excluding finitely many possible points of

discontinuity. If ;. + > 7,41, we directly obtain the necessary condition for z(x, t) + Ew(x, t) = 0 to hold on

1
2max{q,,q,}

x € [0,1],t € [ui+1, 7i+1] mentioned at the beginning of the proof of Claim 3. If y;1 + < 7341, repeatedly tak-

1
2max{g,,q,}
ing the time increments s and conducting the above process for k times, based on the fact that w, z are kept constant for
x€[0,1] at the beginning of each time increment, with excluding finitely many possible points of discontinuity, until
Uiy + Tmmag] > 7341, we also obtain the necessary condition for z(x, t) + Ew(x, t) =0toholdonx € [0,1],t € [Uis1, Tiz1]
mentioned at the beginning of the proof, namely, that z(x,t),w(x,t) are kept constant on x € [0,1],t € [ui+1, Ti+1],

excluding finitely many possible points of discontinuity, that is,
W(x’ t) = M’ Z(x9 t) = _sz (x’ t) € ([0’ 1] X [/’li+19 Ti+l]) \ Id9 (D4)

where I; denotes a set of finitely many possible points of discontinuity of the functions w(x, t), z(x, t) in x € [0,1],t €
[ui+1, Ti+1], and where M is a nonzero constant (because z[t], w[t] are not identically zero on t € [pit1, Ti+1])-

The situation that w(x,f)=M and z(x,t) = —AM for (x,t) € ([0,1] X [tir1, Tiv1]) \ Iy, means ¢(t) = @M onte
[4i+1, Ti+1] according to (4), ex_cluding finitely many possible points of discontinuity on ¢ € [u;41, 7i+1]- Recalling (1), it
then must be that (a — qlbc)L:p) + b(qz + q1p) = 0. It follows that

- cb(q2+ q1p)
l=—2 2 4p>0, D5
@—qbe) P (D3)
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because the constants ¢, b, g1, g2, p and a — g bc are positive. Inserting the control input (36) into the right boundary
condition (5), recalling (15), (16) and {(t) = L:‘”)M , a necessary condition of w(x, t)=M and z(x, t) = —M for (x,1) €
([0, 1] X [fi+1, Ti+1)) \ 14, is that the following equation holds

[q2 + (ql ql(Tl))/l] =K qz(fl)/ (T eqz(r)(a ‘h(‘l’)bC)(l—y)dy
i

?z(fi)(—ij'P) em(a e )bc)]M’ (D6)
c(q;(zp + §5(71))

that is,

N cb(q2 + q1p)
qz+(q1—q1(rl~))<% p>

——(a—{,(z))bc) ——(a—q,(z)bo)

— e 21 +

= — |4,(rb 1 e‘“ ) + Ae‘“ ) _ (g2 + q1p) ’ (D7)
a — §,(r))bc 4,(z)p + ,(7;) (@ — q1be)

because of M # 0. Recalling q,(0) = q and §4,(0) = g, we have 0 < q, <§q(m) £q1,0< q, < §,(71) < g, (the consequence

of (61) and the fact that 6 € S; deflned by (76)), which implies (qurq;fC’ 3 > (q(zf ;Jr(ql;c))‘) ) 'We thus have
1 T;

1 N 1 N
1- em(a—ql(ri)bc) em(a—ql(ri)bc) (q2 + Q1P)

- + = —
a—q,(z)bc G,(z)p + 4,(:) (@ — q1bc)
1— el O mm B (Gy(m) + 3 (r)p)
a—q,(t)bc ql(fl)p +§,(z) (a—§,(z)bc)

1
>—>0. (D8)
a — q,(ti)bc

Therefore, recalling the constants c, b, g1, g2, p, @ — gq1bc and q,(z;), §,(z;) are positive, the right-hand side of (D7) is
greater than zero because of k¥ < 0 and (D8), and the left-hand side of (D7) is also greater than zero because of 4, (z;) < q;.
The necessary condition of w(x, t) = M and z(x, t) = — M for (x,t) € ([0,1] X [4i+1, Tiv1]) \ Ig with M # 0 becomes that the
design parameter « is equal to x defined as

- a oo [ 02+ qip)
K = <Qz + (1 q1(71)) < —qibe +p>>

—L_(a—g,(z)bc) —(a—,(z)bc)
(r) () —+
+ l%(ﬂ)b (1 en P C ek [ )>] <o. (DY)

— §,(z)bc G,()p + §,(z:) (a — q1be)

According to (D8) and g, (r;) > q; Q, (1) > q,,we know that x defined by (D9) is in the following range

(a—g,bolg: + (g1 — g ("L + p)]

<k <0. (D10)

_gzb

Recalling the first term in (12), we know that k # k. We thus conclude that w(x, )= M and z(x, t) = —IM with M #0
on (x,t) € ([0,1] X [#ir1, Ti+1]) \ I does not hold. Claim 3 is proven.

APPENDIX E. PROOF OF CLAIM 4

We first prove sufficiency. If z[¢] (or w[¢]) are not identically zero for ¢t = [0, lim;_, . (z;)), there exists an interval [p;1, Tiy1]
on which z[¢] (or w[t]) are not identically zero. It follows that §,(zi+1) = ¢1 (or §,(zi+1) = q2) recalling Lemma 3.
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Next, we prove necessity. When §,(0) # q1 (or §,(0) # q), if the estimate reaches the true value at an instant z;,,,
that is, §; (zi41) = q1 (0or §,(7i11) = q2), it follows there exists n € N such that Q,1(pit1, Ti+1) # 0 (or Qp3(Uit1, Tit1) # 0).
(This is true because, if Q1 (¢i+1, Ti+1) = 0 (Or Qp3(pit1, 7iv1) = 0) for all n € N, it would also be true that g, 1 (¢, pi+1) =
0 (or gna(t, ui1) = 0) for all n € N on t € [ui41, 7i41], according to (55) and (57). It follows that Q,»(ui+1,7i+1) = 0,
Hy1(piv1, Tiv1) = 0 (0F Qua(ita, Tiv1) = 0, Hy2(piv1, 7i41) =0) for all n € N according to (53)—-(57). Consequently, we have
from (61) that §,(zi+1) = §,(7) # q1 (or §,(7i+1) = §,(71) # q2) by recalling (59)—-(60)). We then conclude that z[t] (or
w(t]) are not identically zero on ¢ € [y;41, 7i+1] according to Lemma 2. That is, z[t] (or w(¢]) are not identically zero on
t = [0,1imj o (71)).

The proof of Claim 4 is complete.

APPENDIX F. PROOF OF CLAIM 4

We prove this claim by estimating the largest convergence time of parameter estimates 7, in various situations of initial
conditions z[0], w[0], £(0). Inserting (36) into (5), we get

1
Gw(1, 1) = ,(t) / ¢, y; 0OW, Hdy + §,(H)AL; 0D)E (D) + §,(Dz(L, b). (F1)
0

Case 1: z[0] # 0,w[0] = 0,{(0) = 0. According to Lemma 3, we have §,(r1) = q; and §,(t) =0 for ¢t > 7. If w[t]=0
on t € [0, 1], then w(t] and {(¢) are identically zero on ¢ >0 according to (1), (3) and (F1) with §,(t) =0 for t > 7;. If
q,(0) # g, it follows that §,(t) cannot reach the true value g, according to Claim 4 with property 1: a contradiction with
the fact that g, (f) would reach g, in finite time. Thus w[¢] is not identically zero on t € [0, 71] if §,(0) # q.. It follows that
q,(t) can reach g, not later than 7; according to Lemma 3. It is obtained from (38) that the dwell time is less than or equal
to T. Therefore r, < T.

Case 2: w[0] # 0,2[0] = 0,¢(0) = 0. The maximum time taken by the nonzero values of w[0] propagate to x=0 and
enter z(0, t) is qi. Therefore, the estimate g, (¢) would reach the true value q; not later than 7y = min{z; : f € Z,, 7y > ql}
2 2

according to Lemma 3. Because of w[0] # 0, we have §,(z1) = g». It follows that 7, < qi + T because the dwell time is less
than or equal to T. ’

Case 3: £(0) # 0,z[0] = 0,w[0] = 0. According to (F1) and (4), we know that w[t], z[t] are not identically zero on t €
[0, 71], which implies that the estimates (t) reach the true values 6 not later than 7, according to Lemma 3. Therefore
. <11 <T.

Case 4: £(0) # 0,w[0] # 0, z[0] = 0. The necessary condition of the fact that z[¢] is identically zero (i.e., w(0, t) = f)éj (1)
always holds) for ¢ € [0, 7y] where 7y = min{z; : f € Z,, 77 > qi} is k¥ > 0, according to the analysis in Case 2 in the proof
of the portion 1 of the theorem. Recalling ¥ < 0 in (12), we kznow that z[t] is not identically zero on t € [0, 77], which
implies that the estimate g, () reaches the true value g; not later than z; according to Lemma 3. Because of w[0] #0, we
have that q,(r1) = q,. Therefore 7, < qi +T.

Case 5: £(0) # 0, z[0] # 0,w[0] = O.ZAccording to Lemma 3, we have that §,(z;) = q; and §,(t) = 0for ¢t > 7;. If w[t] =0
ont € [0, 7], it follows from (1) that ¢(t) = e(@0:29:¢(0) is not identically zero on t € [z, 7,]. It is obtained from (F1) that
w(1, t) is not identically zero on ¢ € [71, 7,]: a contradiction. Therefore, w(t] are not identically zero on t € [0, 7;], which
implies that the estimate §,(t) reaches the true value g, not later than 7, according to Lemma 3. Therefore, we have that
7, <1y <2T.

Case 6: £(0) = 0,z[0] # 0,w[0] # 0 and Case 7: {(0) # 0, z[0] # 0, w[0] # 0. According to Lemma 3, we have that 7, <
1 < T.

Case 8: z[0] = 0,w[0] = 0,¢(0) = 0. According to the plant (1)-(5) with the control input (36), we know that
z[t], wlt], £ (¢) are identically zero for t > 0. The estimates reach the true values in finite time only when g, (0) = ¢1,3,(0) =
g2, thatis, 7, = 0.

In summary, we have proved for all eight cases that 7, < max{ é + T,2T}. This completes the proof of Claim 5.
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